117 research outputs found

    Magnetocentrifugal acceleration of plasma in a nonaxisymmetric magnetosphere

    Get PDF
    Violation of the axial synnetry of a magnetic field essentially modifies the physics of the plasma outflow in the magnetosphere of rotating objects. In comparison to the axisymmetric outflow, two new affects appear: more efficient magnetocentrifugal acceleration of the plasma along particular field lines and generation of MHD waves. Here, we use an ideal MHD approximation to study the dynamics of a cold wind in the nonaxisymmetric magnetosphere. We obtain a self-consistent analytical solution of the problem of cold plasma outflow from a slowly rotating star with a slightly nonaxisymmetric magnetic field using perturbation theory. In the axisymmetric (monopole-like) magnetic field, the first term in the expansion of the terminating energy of the plasama in powers of Ω\Omega is proportional to Ω4\Omega^4, where Ω\Omega is the angular velocity of the central source. Violation of the axial symmetry of the magnetic field crucially changes this dependence. The first correction to the energy of the plasma becomes proportional to Ω\Omega. Efficient magnetocentrifugal acceleration occurs along the field lines curved initially in the direction of the rotation. I argue that all necessary conditions for the efficient magnetocentrifugal acceleration of the plasma exist in the radio pulsar megnetosphere. We calculated the first correction of the rotational losses due to the generation of the MHD waves and analysed the plasma acceleration by these waves

    Modeling interaction of relativistic and nonrelativistic winds in binary system PSR 1259-63/SS2883. I.Hydrodynamical limit

    Full text link
    In this paper, we present a detailed hydrodynamical study of the properties of the flow produced by the collision of a pulsar wind with the surrounding in a binary system. This work is the first attempt to simulate interaction of the ultrarelativistic flow (pulsar wind) with the nonrelativistic stellar wind. Obtained results show that the wind collision could result in the formation of an "unclosed" (at spatial scales comparable to the binary system size) pulsar wind termination shock even when the stellar wind ram pressure exceeds significantly the pulsar wind kinetical pressure. Moreover, the post-shock flow propagates in a rather narrow region, with very high bulk Lorentz factor (γ∼100\gamma\sim100). This flow acceleration is related to adiabatical losses, which are purely hydrodynamical effects. Interestingly, in this particular case, no magnetic field is required for formation of the ultrarelativistic bulk outflow. The obtained results provide a new interpretation for the orbital variability of radio, X-ray and gamma-ray signals detected from binary pulsar system PSR 1259-63/SS2883.Comment: 11 pages, 13 figures, submitted to MNRA

    Synthetic synchrotron emission maps from MHD models for the jet of M87

    Full text link
    We present self-consistent global, steady-state MHD models and synthetic optically thin synchrotron emission maps for the jet of M87. The model consist of two distinct zones: an inner relativistic outflow, which we identify with the observed jet, and an outer cold disk-wind. While the former does not self-collimate efficiently due to its high effective inertia, the latter fulfills all the conditions for efficient collimation by the magneto-centrifugal mechanism. Given the right balance between the effective inertia of the inner flow and the collimation efficiency of the outer disk wind, the relativistic flow is magnetically confined into a well collimated beam and matches the measurements of the opening angle of M87 over several orders of magnitude in spatial extent. The synthetic synchrotron maps reproduce the morphological structure of the jet of M87, i.e. center-bright profiles near the core and limb-bright profiles away from the core. At the same time, they also show a local increase of brightness at some distance along the axis associated to a recollimation shock in the MHD model. Its location coincides with the position of the optical knot HST-1. In addition our best fitting model is consistent with a number of observational constraints such as the magnetic field in the knot HST-1, and the jet-to-counterjet brightness ratio.Comment: 9 pages, 9 figures, accepted by Ap
    • …
    corecore